R/aaa.R, R/methods-KernelComputer.R
KernelComputer-class.RdAn S4 class to represent input for kernel matrix computations
# S4 method for KernelComputer
show(object)
# S4 method for KernelComputer
num_components(object)
# S4 method for KernelComputer
num_evalpoints(object)
# S4 method for KernelComputer
num_paramsets(object)
# S4 method for KernelComputer
component_names(object)The object for which to call a class method.
show(KernelComputer): Print a summary about the object.
num_components(KernelComputer): Get number of components.
num_evalpoints(KernelComputer): Get number of evaluation points.
num_paramsets(KernelComputer): Get number of parameter sets.
component_names(KernelComputer): Get component names.
inputCommon input (for example parameter values).
K_inputInput for computing kernel matrices between data points
(N x N). A list.
Ks_inputInput for computing kernel matrices between data and output
points (P x N). A list.
Kss_inputInput for computing kernel matrices between output
points (P x P). A list, empty if full_covariance=FALSE.
comp_namesComponent names (character vector).
full_covarianceBoolean value determining if this can compute full predictive covariance matrices (or just marginal variance at each point).
no_separate_output_pointsBoolean value determining if
Ks_input and Kss_input are the same thing. Using this
knowledge can reduce unnecessary computations of kernel matrices.
STREAMexternal pointer (for calling 'Stan' functions)