These use the same parametrizations as defined in the 'Stan' documentation. See the docs for gamma and inverse gamma distributions.
uniform(square = FALSE)
normal(mu, sigma, square = FALSE)
student_t(nu, square = FALSE)
gam(shape, inv_scale, square = FALSE)
igam(shape, scale, square = FALSE)
log_normal(mu, sigma, square = FALSE)
bet(a, b)
is prior for a square-transformed parameter?
mean
standard deviation
degrees of freedom
shape parameter (alpha)
inverse scale parameter (beta)
scale parameter (beta)
shape parameter
shape parameter
a named list
Other functions related to the inverse-gamma distribution:
dinvgamma_stanlike()
,
plot_invgamma()
# Log-normal prior
log_normal(mu = 1, sigma = 1)
#> $dist
#> [1] "log-normal"
#>
#> $square
#> [1] FALSE
#>
#> $mu
#> [1] 1
#>
#> $sigma
#> [1] 1
#>
# Cauchy prior
student_t(nu = 1)
#> $dist
#> [1] "student-t"
#>
#> $square
#> [1] FALSE
#>
#> $nu
#> [1] 1
#>
# Exponential prior with rate = 0.1
gam(shape = 1, inv_scale = 0.1)
#> $dist
#> [1] "gamma"
#>
#> $alpha
#> [1] 1
#>
#> $beta
#> [1] 0.1
#>
#> $square
#> [1] FALSE
#>
# Create a similar priors as in LonGP (Cheng et al., 2019)
# Not recommended, because a lengthscale close to 0 is possible.
a <- log(1) - log(0.1)
log_normal(mu = 0, sigma = a / 2) # for continuous lengthscale
#> $dist
#> [1] "log-normal"
#>
#> $square
#> [1] FALSE
#>
#> $mu
#> [1] 0
#>
#> $sigma
#> [1] 1.151293
#>
student_t(nu = 4) # for interaction lengthscale
#> $dist
#> [1] "student-t"
#>
#> $square
#> [1] FALSE
#>
#> $nu
#> [1] 4
#>
igam(shape = 0.5, scale = 0.005, square = TRUE) # for sigma
#> $dist
#> [1] "inv-gamma"
#>
#> $alpha
#> [1] 0.5
#>
#> $beta
#> [1] 0.005
#>
#> $square
#> [1] TRUE
#>