sample_model
takes an lgpmodel
object and fits it using sampling
.
optimize_model
takes an lgpmodel
object and fits it using optimizing
.
sample_model(
model,
verbose = TRUE,
quiet = FALSE,
skip_postproc = is_f_sampled(model),
...
)
optimize_model(model, ...)
An object of class lgpmodel.
Can messages be printed?
Should all output messages be suppressed? You need to set
also refresh=0
if you want to suppress also the progress update
messages from sampling
.
Should all postprocessing be skipped? If this is
TRUE
, the returned lgpfit object will likely be
much smaller (if sample_f=FALSE
).
Optional arguments passed to
sampling
or optimizing
.
sample_model
returns an object of class lgpfit
containing the parameter draws, the original model
object,
and possible postprocessing results. See documentation of
lgpfit for more information.
optimize_model
directly returns the list returned by
optimizing
. See its documentation for more information.
Other main functions:
create_model()
,
draw_pred()
,
get_draws()
,
lgp()
,
pred()
,
prior_pred()