Publications
Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data. Timonen, J. & Lähdesmäki, H., 2024, arXiv
An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models. Timonen, J., Siccha, N., Bales, B., Lähdesmäki, H. & Vehtari, A., 2023, Stat. 12, 1, e614.
lgpr: an interpretable non-parametric method for inferring covariate effects from longitudinal data. Timonen, J., Mannerström, H., Vehtari, A. & Lähdesmäki, H., 2021, Bioinformatics. 37, 13, p. 1860-1867.
A probabilistic framework for molecular network structure inference by means of mechanistic modeling. Timonen, J., Mannerström, H., Lähdesmäki, H. & Intosalmi, J., 2018, IEEE-ACM Transactions on Computational Biology and Bioinformatics. 16, 6, p. 1843-1854